ЭЛЕКТРОН - Definition. Was ist ЭЛЕКТРОН
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist ЭЛЕКТРОН - definition

СУБАТОМНАЯ ЧАСТИЦА С ОТРИЦАТЕЛЬНЫМ ЗАРЯДОМ
Электрон (частица); Электрон (физич.); Электроны; Электрон (квазичастица); Негатрон (физика); Масса электрона; Масса покоя электрона
  •  Протяжённый воздушный ливень, вызванный энергетическим космическим лучом, проникающим в атмосферу Земли.
  • двух идентичных фермионов в одномерном ящике]]. Если частицы меняются местами, волновая функция меняет знак.
  • квантованной]] согласно натуральному числу n. Электрон, переходящий на более низкую орбиту, излучает фотон, равный разности энергий между орбитами.
  •  Здесь тормозное излучение создаётся электроном ''e,'' отклоняемым электрическим полем атомного ядра. Изменение энергии ''E''<sub>2</sub> − ''E''<sub>1</sub> определяет частоту ''f'' излучаемого фотона.
  • Роберт Милликен]]
  • квантовым числам]], в этой точке.

ЭЛЕКТРОН         
(е , е-), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9·10-28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях. Электрон - один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.
ЭЛЕКТРОН         
элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это - самая легкая из электрически заряженных частиц. Электроны участвуют почти во всех электрических явлениях. В металле часть электронов не связана с атомами и может свободно перемещаться, благодаря чему металлы хорошо проводят электричество. В плазме, т.е. ионизованном газе, положительно заряженные атомы также перемещаются свободно, но, имея гораздо большую массу, движутся значительно медленнее электронов, а потому вносят меньший вклад в электрический ток. Благодаря малой массе электрон оказался частицей, наиболее вовлеченной в развитие квантовой механики, частной теории относительности и их объединение - релятивистскую квантовую теорию поля. Считается, что в настоящее время полностью известны уравнения, описывающие поведение электронов во всех реально осуществимых физических условиях. (Правда, решение этих уравнений для систем, содержащих большое число электронов, таких, как твердое тело и конденсированная среда, все еще сопряжено с трудностями.)
Все электроны тождественны и подчиняются статистике Ферми - Дирака. Это обстоятельство выражается в принципе Паули, согласно которому два электрона не могут находиться в одном и том же квантовом состоянии. Одно из следствий принципа Паули заключается в том, что состояния наиболее слабо связанных электронов - валентных электронов, определяющих химические свойства атомов, - зависят от атомного номера (зарядового числа), который равен числу электронов в атоме. Атомный номер равен также заряду ядра, выраженному в единицах заряда протона е. Другое следствие состоит в том, что электронные "облака", окутывающие ядра атомов, сопротивляются их перекрытию, вследствие чего обычное вещество обладает свойством занимать определенное пространство. Как и полагается элементарной частице, число основных характеристик электрона невелико, а именно масса (me . 0,51 МэВ . 0,91?10-27 г), заряд (?e . ?1,6?10-19 Кл) и спин (1/2ћ ?1/2?0,66?10-33 Дж?с, где - постоянная Планка h, деленная на 2?). Через них выражаются все остальные характеристики электрона, например магнитный момент (?1,001?3 . 1,001?0,93?10-23 Дж/Тл), за исключением еще двух констант, характеризующих слабое взаимодействие электронов (см. ниже).
Первые указания на то, что электричество не является непрерывным потоком, а переносится дискретными порциями, были получены в опытах по электролизу. Результатом явился один из законов Фарадея (1833): заряд каждого иона равен целому кратному заряда электрона, называемого ныне элементарным зарядом е. Наименование "электрон" вначале относилось к этому элементарному заряду. Электрон же в современном смысле слова был открыт Дж.Томсоном в 1897. Тогда было уже известно, что при электрическом разряде в разреженном газе возникают "катодные лучи", несущие отрицательный электрический заряд и идущие от катода (отрицательно заряженного электрода) к аноду (положительно заряженному электроду). Исследуя влияние электрического и магнитного полей на пучок катодных лучей, Томсон пришел к выводу: если предположить, что пучок состоит из частиц, заряд которых не превышает элементарного заряда ионов е, то масса таких частиц будет в тысячи раз меньше массы атома. (Действительно, масса электрона составляет примерно 1/1837 массы легчайшего атома, водорода.) Незадолго до этого Х.Лоренц и П.Зееман уже получили доказательства того, что электроны входят в состав атомов: исследования воздействия магнитного поля на атомные спектры (эффект Зеемана) показали, что у заряженных частиц в атоме, благодаря наличию которых свет взаимодействует с атомом, отношение заряда к массе такое же, как и установленное Томсоном для частиц катодных лучей.
Первая попытка описать поведение электрона в атоме связана с моделью атома Бора (1913). Представление о волновой природе электрона, выдвинутое Л.де Бройлем (1924) (и подтвержденное экспериментально К.Дэвиссоном и Л.Джермером в 1927), послужило основой волновой механики, разработанной Э.Шрёдингером в 1926. Одновременно на основании анализа атомных спектров С.Гаудсмитом и Дж.Уленбеком (1925) был сделан вывод о наличии у электрона спина. Строгое волновое уравнение для электрона было получено П.Дираком (1928). Уравнение Дирака согласуется с частной теорией относительности и адекватно описывает спин и магнитный момент электрона (без учета радиационных поправок).
Из уравнения Дирака вытекало существование еще одной частицы - положительного электрона, или позитрона, с такими же значениями массы и спина, как у электрона, но с противоположным знаком электрического заряда и магнитного момента. Формально уравнение Дирака допускает существование электрона с полной энергией либо . mс2 (mс2 - энергия покоя электрона), либо . - mс2; отсутствие радиационных переходов электронов в состояния с отрицательными энергиями можно было объяснить, предположив, что эти состояния уже заняты электронами, так что, согласно принципу Паули, для дополнительных электронов нет места. Если из этого дираковского "моря" электронов с отрицательными энергиями удалить один электрон, то возникшая электронная "дырка" будет вести себя как положительно заряженный электрон. Позитрон был обнаружен в космических лучах К.Андерсоном (1932).
По современной терминологии электрон и позитрон являются античастицами по отношению друг к другу. Согласно релятивистской квантовой механике, для частиц любого вида существуют соответствующие античастицы (античастица электрически нейтральной частицы может совпадать с ней). Отдельно взятый позитрон столь же стабилен, как и электрон, время жизни которого бесконечно, поскольку не существует более легких частиц с зарядом электрона. Однако в обычном веществе позитрон рано или поздно соединяется с электроном. (Вначале электрон и позитрон могут на короткое время образовать "атом", так называемый позитроний, сходный с атомом водорода, в котором роль протона выполняет позитрон.) Такой процесс соединения называется электрон-позитронной аннигиляцией; в нем полная энергия, импульс и момент импульса сохраняются, а электрон и позитрон превращаются в гамма-кванты, или фотоны, - обычно их два. (С точки зрения "моря" электронов данный процесс представляет собой радиационный переход электрона в так называемую дырку - незанятое состояние с отрицательной энергией.) Если скорости электрона и позитрона не очень велики, то энергия каждого из двух гамма-квантов приблизительно равна mс2. Это характеристическое излучение аннигиляции позволяет обнаруживать позитроны. Наблюдалось, например, такое излучение, исходящее из центра нашей Галактики. Обратный процесс превращения электромагнитной энергии в электрон и позитрон называется рождением электрон-позитронной пары. Обычно гамма-квант с высокой энергией "конвертируется" в такую пару, пролетая вблизи атомного ядра (электрическое поле ядра необходимо, поскольку при превращении отдельно взятого фотона в электрон-позитронную пару были бы нарушены законы сохранения энергии и импульса). Еще один пример - распад первого возбужденного состояния ядра 16О, изотопа кислорода.
Испусканием электронов сопровождается один из видов радиоактивности ядер. Это бета-распад - процесс, обусловленный слабым взаимодействием, при котором нейтрон в исходном ядре превращается в протон. Наименование распада происходит от названия "бета-лучи", исторически присвоенного одному из видов радиоактивных излучений, которое, как потом выяснилось, представляет собой быстрые электроны. Энергия электронов этого излучения не имеет фиксированного значения, поскольку (в соответствии с гипотезой, выдвинутой Э.Ферми) при бета-распаде вылетает еще одна частица - нейтрино, уносящая часть энергии, выделяющейся при ядерном превращении. Основной процесс таков:
Нейтрон . протон . электрон . антинейтрино.
Испускаемый электрон не содержится в нейтроне; появление электрона и антинейтрино представляет собой "рождение пары" из энергии и электрического заряда, освобождающихся при ядерном превращении. Существует также бета-распад с испусканием позитронов, при котором находящийся в ядре протон превращается в нейтрон. Подобные превращения могут также происходить в результате поглощения электрона; соответствующий процесс называется К-захватом. Электроны и позитроны испускаются при бета-распаде и других частиц, например мюонов.
Роль в науке и технике. Быстрые электроны широко применяются в современной науке и технике. Они используются для получения электромагнитного излучения, например рентгеновского, возникающего в результате взаимодействия быстрых электронов с веществом, и для генерации синхротронного излучения, возникающего при их движении в сильном магнитном поле. Ускоренные электроны применяют и непосредственно, например в электронном микроскопе, или при более высоких энергиях - для зондирования ядер. (В таких исследованиях была обнаружена кварковая структура ядерных частиц.) Электроны и позитроны сверхвысоких энергий используются в электрон-позитронных накопительных кольцах - установках, аналогичных ускорителям элементарных частиц. За счет их аннигиляции накопительные кольца позволяют с высокой эффективностью получать элементарные частицы с очень большой массой. См. также АНТИВЕЩЕСТВО; АТОМ; АТОМА СТРОЕНИЕ; ХИМИЯ; МОЛЕКУЛ СТРОЕНИЕ; ЭЛЕКТРОННЫЙ МИКРОСКОП; АТОМНОГО ЯДРА СТРОЕНИЕ; УСКОРИТЕЛЬ ЧАСТИЦ; ФИЗИКА; ПЛАНКА ПОСТОЯННАЯ; КВАНТОВАЯ МЕХАНИКА; РАДИОАКТИВНОСТЬ; ФИЗИКА ТВЕРДОГО ТЕЛА; СПЕКТРОСКОПИЯ.
Электрон         
I Электро́н (символ е-, e)

первая элементарная частица, открытая в физике; материальный носитель наименьшей массы и наименьшего электрического заряда в природе. Э. - составная часть Атомов; их число в нейтральном атоме равно атомному номеру, т. е. числу протонов в ядре.

Современные значения заряда (e) и массы (me) Э. равны:

e = - 4,803242(14)․10-10 ед. СГСЭ = - 1,6021892(46)․10-19 Кулон,

me = 0,9109534(47)․10-27 г = 0,5110034(14) Мэв/с2,

где с - скорость света в вакууме (в скобках после числовых значений величин указаны средние квадратичные ошибки в последних значащих цифрах). Спин Э. равен 1/2 (в единицах Планка постоянной (См. Планка постоянная) ), и, следовательно, Э. подчиняются Ферми - Дирака статистике (См. Ферми - Дирака статистика). Магнитный момент Э. - μ = 1,0011596567(35) μ0, где μ0 - Магнетон Бора. Э. - стабильная частица и относится к классу лептонов (См. Лептоны).

Установление существования Э. было подготовлено трудами многих выдающихся исследователей; в 1897 Э. был открыт Дж. Дж. Томсоном. Название "Э." [первоначально предложенное английским учёным Дж. Стони (1891) для заряда одновалентного иона] происходит от греческого слова élektron, что означает янтарь. Электрический заряд Э. условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря (см. Электрический заряд). Античастица (См. Античастицы) Э. - позитрон (e+) открыта в 1932.

Э. участвует в электромагнитных, слабых и гравитационных взаимодействиях и проявляет многообразие свойств в зависимости от типа взаимодействий. В классической электродинамике Э. ведёт себя как частица, движение которой подчиняется Лоренца - Максвелла уравнениям. Понятие "размер Э." не удаётся сформулировать непротиворечиво, хотя величину r0 = е2/тес2Электрон10-13 см принято называть классическим радиусом Э. Причину этих затруднений удалось понять в рамках квантовой механики. Согласно гипотезе де Бройля (См. Бройль) (1924), Э. (как и все другие материальные микрообъекты) обладает не только корпускулярными, но и волновыми свойствами (см. Корпускулярно-волновой дуализм, Волны де Бройля). Де-бройлевская длина волны Э. равна , где υ - скорость движения Э. В соответствии с этим Э., подобно свету, могут испытывать интерференцию и дифракцию. Волновые свойства Э. были экспериментально обнаружены в 1927 американскими физиками К. Дэвиссоном и Л. Джермером и независимо английским физиком Дж. П. Томсоном (см. Дифракция частиц).

Движение Э. подчиняется уравнениям квантовой механики: Шрёдингера уравнению (См. Шрёдингера уравнение) для нерелятивистских явлений и Дирака уравнению (См. Дирака уравнение) - для релятивистских. Опираясь на эти уравнения, можно показать, что все оптические, электрические, магнитные, химические и механические свойства веществ объясняются особенностями движения Э. в атомах. Наличие спина существенным образом влияет на характер движения Э. в атоме. В частности, только учёт спина Э. в рамках квантовой механики позволил объяснить периодическую систему элементов (См. Периодическая система элементов) Д. И. Менделеева, а также природу химической связи (См. Химическая связь) атомов в молекулах.

Э. - член единого обширного семейства элементарных частиц, и ему в полной мере присуще одно из основных свойств элементарных частиц - их взаимопревращаемость. Э. может рождаться в различных реакциях, самыми известными из которых являются распад отрицательно заряженного мюона (См. Мюоны) (μ-) на электрон, электронное Антинейтрино () и мюонное Нейтриноμ):

,

а также Бета-распад нейтрона на протон, электрон и электронное антинейтрино:

.

Последняя реакция является источником β-лучей при радиоактивном распаде ядер. Оба процесса - частные случаи слабых взаимодействий (См. Слабые взаимодействия). Примером электромагнитных процессов, в происходят превращения Э., может служить аннигиляция электрона и позитрона на два γ-кванта

e- + e+ → 2γ.

С 60-х гг. интенсивно изучаются процессы рождения сильно взаимодействующих частиц (адронов) при столкновении электронов с позитронами, например рождение пары пи-мезонов (См. Пи-мезоны):

e- + е+ → π- + π+.

В конце 1974 в аналогичной реакции открыта новая элементарная частица, т. н. J//ψ-частица (см. Резонансы, Элементарные частицы).

Релятивистская квантовая теория Э. (Квантовая электродинамика) - самая разработанная область квантовой теории поля, в которой достигнуто удивительное согласие с экспериментом. Так, вычисленное значение магнитного момента Э.

(где a ≈ 1/137,036 - Тонкой структуры постоянная) с огромной точностью совпадает с его экспериментальным значением. Однако теорию Э. нельзя считать законченной, поскольку ей присущи внутренние логические противоречия (см. Квантовая теория поля).

Лит.: Милликен P., Электроны (+ и -), протоны, фотоны, нейтроны и космические лучи, пер. с англ., М. - Л., 1939; Андерсон Д., Открытие электрона, пер. с англ., М., 1968; Томсон Г. П., Семидесятилетний электрон, пер. с англ., "Успехи физических наук", 1968, т. 94, в. 2.

Л. И. Пономарев.

II Электро́н

редко употребляемое название магниевых сплавов (См. Магниевые сплавы). Под таким названием в 20-х гг. 20 в. появились первые промышленные магниевые сплавы на основе систем Mg - Al - Zn и Mg - Mn, содержащие до 10\% Al, до 3\% Zn и до 2,5\% Mn.

III Электро́н ("Электро́н",)

наименование серии советских искусственных спутников Земли (ИСЗ) для исследования радиационного пояса Земли, космических лучей, химического состава околоземного космического пространства, коротковолнового излучения Солнца и радиоизлучения галактики, микрометеоритов и др. "Э.-1" и"Э.-3" имели массу 350 кг, диаметр 0,75 м, длину 1,3 м-, "Э.-2" и "Э.-4" - массу 445 кг, диаметр 1,8 м, длину 24 м. Измерения, проведённые с помощью ИСЗ "Э.", позволили изучить временные вариации характеристик околоземного космического пространства при различных уровнях солнечной активности. "Э." запускались попарно одной ракетой-носителем.

Полёты искусственных спутников Земли "Электрон"

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

| | | Начальные параметры орбиты |

| | |--------------------------------------------------------------------------------------------------------|

| Наименование | Дата запуска | высота в | высота в | | Период |

| | | перигее, км | апогее, км | наклонение, ° | обращения, |

| | | | | | мин |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| "Электрон-1" | 30.1.64 | 406 | 7100 | 61 | 169 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| "Электрон-2" | " | 460 | 68200 | 61 | 1360 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| "Электрон-3" | 11.7.64 | 405 | 7040 | 60,87 | 168 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| "Электрон-4" | " | 459 | 66235 | 60,87 | 1314 |

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

Wikipedia

Электрон

Электро́н (от др.-греч. ἤλεκτρον «янтарь») — субатомная частица (обозначается символом e
или β
), чей электрический заряд отрицателен и равен по модулю одному элементарному электрическому заряду. Электроны принадлежат к первому поколению лептонных частиц и обычно считаются фундаментальными частицами, поскольку у них нет известных компонентов или субструктур. Электрон имеет массу, которая составляет приблизительно 1/1836 массы протона. Квантово-механические свойства электрона включают собственный угловой момент (спин) полуцелого значения, выраженного в единицах приведённой постоянной Планка, ħ, что делает их фермионами. В связи с этим никакие два электрона не могут занимать одно и то же квантовое состояние в соответствии с принципом запрета Паули. Как и все элементарные частицы, электроны обладают свойствами как частиц, так и волн: они могут сталкиваться с другими частицами и могут дифрагировать как свет. Волновые свойства электронов легче наблюдать экспериментально, чем свойства других частиц, таких как нейтроны и протоны, потому что электроны имеют меньшую массу и, следовательно, большую длину волны де Бройля для равных энергий.

Электроны играют существенную роль во многих физических явлениях, таких как электричество, магнетизм, химия и теплопроводность, а также участвуют в гравитационных, электромагнитных и слабых взаимодействиях. Поскольку электрон имеет заряд, его окружает электрическое поле, и если этот электрон движется относительно наблюдателя, то наблюдатель увидит также магнитное поле. Электромагнитные поля, создаваемые другими источниками, будут влиять на движение электрона в соответствии с законом Лоренца. Электроны излучают или поглощают энергию в виде фотонов при ускоренном движении. Лабораторные приборы способны улавливать отдельные электроны, а также электронную плазму с помощью электромагнитных полей. Специальные телескопы наблюдают электронную плазму в космическом пространстве. Свойства электронов используются во многих технологических процессах, приборах и устройствах, таких как трибология, электролиз, электрохимия, аккумуляторные технологии, электроника, сварка, электронно-лучевые трубки, фотоэлектричество, солнечные панели, электронные микроскопы, лучевая терапия, лазеры, детекторы на основе ионизации газов и ускорители частиц.

Взаимодействия электронов с другими субатомными частицами представляют интерес в химии и ядерной физике. Кулоновское взаимодействие между положительно заряженными протонами внутри атомных ядер и отрицательно заряженными электронами позволяет образовать из них атомы. Ионизация или различия в пропорциях отрицательного заряда электронов по сравнению с положительными зарядами ядер изменяют энергию связи атомной системы. Обмен или совместное использование электронов между двумя или более атомами является основной причиной химической связи. В 1838 году британский естествоиспытатель Ричард Лэминг впервые выдвинул гипотезу о неделимом количестве электрического заряда для объяснения химических свойств атомов. Ирландский физик Джордж Джонстон Стони назвал этот заряд «электроном» в 1891 году, а Дж. Дж. Томсон и его команда британских физиков идентифицировали его как частицу в 1897 году во время эксперимента с электронно-лучевой трубкой. Электроны также могут участвовать в ядерных реакциях при нуклеосинтезе в звёздах, где они известны как бета-частицы. Электроны могут образовываться в результате бета-распада радиоактивных изотопов и при высокоэнергетических столкновениях, например, когда космические лучи попадают в атмосферу. Античастица электрона называется позитроном; он идентичен электрону, за исключением того, что несёт положительный электрический заряд. Когда электрон сталкивается с позитроном, обе частицы могут аннигилировать, создавая фотоны гамма-излучения.

Beispiele aus Textkorpus für ЭЛЕКТРОН
1. В каждой из этих связей имеется либо лишний электрон, либо вакансия - отсутствующий электрон.
2. Вернадского), Киргизия, Октябрь, Ударник, Электрон.
3. Вернадского), Киргизия, Октябрь, Победа, Электрон.
4. У компании "Корс" на балансе два корабля - "Бриз" и "Электрон". "Электрон" новее, построен на Киевской верфи.
5. Один свободный электрон - тоже явление стандартное.
Was ist ЭЛЕКТРОН - Definition